Τεχνολογία

Μυϊκή δυστροφία Duchenne: 3D μυϊκό μοντέλο βοηθά στη μελέτη της νόσου

Μυϊκή δυστροφία Duchenne: 3D μυϊκό μοντέλο βοηθά στη μελέτη της νόσου

Μυϊκή δυστροφία Duchenne: Ο στόχος των ερευνητών ήταν να δημιουργήσουν ένα μοντέλο που θα τους επέτρεπε να προσδιορίσουν εάν τα φάρμακα μπορούν να αντιστρέψουν αυτήν την κυτταρική βλάβη.

Η μυϊκή δυστροφία Duchenne (DMD) είναι η πιο κοινή μυϊκή δυστροφία που διαγιγνώσκεται στην παιδική ηλικία, με περίπου 20.000 νέες περιπτώσεις να αναφέρονται κάθε χρόνο. Είναι μια προοδευτική μυϊκή διαταραχή που έχει ως αποτέλεσμα την απώλεια της μυϊκής λειτουργίας, οδηγώντας τελικά τους πάσχοντες να χάσουν την ανεξαρτησία τους και να αντιμετωπίσουν σοβαρά ιατρικά προβλήματα. Το μέσο προσδόκιμο ζωής για τα άτομα με DMD είναι περίπου 30 χρόνια.

Η αιτία της νόσου είναι μια μετάλλαξη στο γονίδιο που κωδικοποιεί τη δυστροφίνη, μια πρωτεΐνη που μειώνει τον αντίκτυπο της μυϊκής συστολής στην κυτταρική μεμβράνη. Λόγω της απουσίας δυστροφίνης, τα μυϊκά κύτταρα είναι επιρρεπή σε εύκολη βλάβη.

Επί του παρόντος, δεν υπάρχει θεραπεία για το DMD και μία από τις κύριες προκλήσεις που αντιμετωπίζει η ερευνητική κοινότητα είναι να αναπτύξει τεχνητά μοντέλα ικανά να αναπαράγουν με ακρίβεια τη βλάβη που εντοπίζεται στους μύες των ασθενών. Αυτό είναι απαραίτητο για τη μελέτη νέων θεραπειών στο εργαστήριο.

Μια μελέτη που διεξήχθη από το Ινστιτούτο Βιομηχανικής της Καταλονίας (IBEC), που δημοσιεύτηκε αυτή την εβδομάδα στο περιοδικό Biofabrication, περιγράφει την ανάπτυξη ενός τρισδιάστατου μυϊκού μοντέλου ικανού να αναπαράγει τη βλάβη που βρέθηκε στον μυϊκό ιστό ατόμων που πάσχουν από μυϊκή δυστροφία Duchenne.

Το σύστημα, που δημιουργήθηκε μέσω της μηχανικής ιστών χρησιμοποιώντας κύτταρα ασθενών, περιλαμβάνει μυϊκές ίνες που μπορούν να συστέλλονται όταν εφαρμόζεται ένα ηλεκτρικό ερέθισμα. Αυτό είναι ένα κρίσιμο χαρακτηριστικό για τη δημιουργία ενός μοντέλου τεχνητών μυών που επιτρέπει προκλινικές μελέτες φαρμάκων για τη θεραπεία της DMD

Επικεφαλής της εργασίας ήταν ο Juanma Fernández Costa, ανώτερος ερευνητής στο IBEC, με τον Ainoa Tejedera Villafranca, Ph.D. φοιτητής στο IBEC, ως ο πρώτος συγγραφέας. Και οι δύο είναι μέρος της ομάδας Biosensors for Bioengineering, της οποίας ηγείται ο ερευνητής του ICREA, Javier Ramón Azcón.

“Η καινοτομία αυτής της μελέτης έγκειται στην προσπάθειά μας να μοντελοποιήσουμε την κύρια αιτία της νόσου, η οποία είναι η βλάβη στο σαρκόλημμα, τη μεμβράνη των μυϊκών κυττάρων. Ήταν ζωτικής σημασίας για εμάς να το επαναλάβουμε στο εργαστήριο και το έχουμε καταφέρει με επιτυχία. Αυτό δεν είχε γίνει στο παρελθόν», λέει ο Juanma Fernández.

“Δουλέψαμε για μεγάλο χρονικό διάστημα σε διαφορετικά πρωτόκολλα μέχρι να καταφέρουμε να εμφανιστεί αυτή η βλάβη στα κύτταρα των ασθενών, αλλά όχι στα κύτταρα ελέγχου ανθρώπων χωρίς Duchenne. Είναι ευαίσθητο γιατί αν διεγείρεις τους μυς, μπορεί επίσης να προκαλέσεις σπάσιμο των ινών σε υγιή κύτταρα, όπως ακριβώς συμβαίνει όταν αθλούμαστε και νιώθουμε μυϊκό πόνο», προσθέτει ο Ainoa Tejedera.

Ο στόχος των ερευνητών ήταν να δημιουργήσουν ένα μοντέλο που θα τους επέτρεπε να προσδιορίσουν εάν τα φάρμακα μπορούν να αντιστρέψουν αυτήν την κυτταρική βλάβη. Αντί να αντιμετωπίσουν τα συμπτώματα, που είναι το επίκεντρο των παρηγορητικών θεραπειών, στόχευαν να στοχεύσουν τη βασική αιτία της νόσου.

Αν και έχουν ήδη δοκιμάσει ορισμένα φάρμακα χρησιμοποιώντας αυτό το μοντέλο, εργάζονται για την ανάπτυξη ενός βελτιωμένου μοντέλου που ονομάζεται organ-on-a-chip. Είναι μια πιο προηγμένη πλατφόρμα που ενσωματώνει αισθητήρες και ένα μικρορευστο σύστημα στο τρισδιάστατο μυϊκό μοντέλο. Αυτό θα επιτρέψει την αποτελεσματικότερη παρακολούθηση της κυτταρικής βλάβης και την ταχύτερη δοκιμή διαφόρων μορίων ή φαρμάκων.

Διαβάστε όλες τις τελευταίες Ειδήσεις για την υγεία από την Ελλάδα και τον Κόσμο
Ακολουθήστε το healthweb.gr στο Google News και μάθετε πρώτοι όλες τις ειδήσεις

Διαβάστε Eπίσης:

Πώς μπορείτε να αντιμετωπίσετε τους μυϊκούς πόνους;

Μελέτη αναδεικνύει τις προκλήσεις που αντιμετωπίζουν τα άτομα που ζουν με μια ή περισσότερες σπάνιες ασθένειες

Πώς μπορεί η γονιδιακή επεξεργασία να διαμορφώσει το μέλλον μας;

Ποια είναι τα συμπτώματα των νευρομυϊκών διαταραχών;

svg%3E svg%3E
svg%3E
svg%3E
Περισσότερα

Τι είναι και πώς γίνεται η τεχνητή μεταμόσχευση κερατοειδούς;

Mεταμόσχευση κερατοειδούς: Σε ορισμένα μάτια, μια παραδοσιακή μεταμόσχευση κερατοειδούς έχει εξαιρετικά χαμηλό ποσοστό επιτυχίας. Σε αυτές τις περιπτώσεις, μπορεί συχνά να πραγματοποιηθεί τεχνητή μεταμόσχευση κερατοειδούς. 

Ο αντίκτυπος των τεχνολογικών εξελίξεων στην υγειονομική περίθαλψη

Ενδυνάμωση υγείας: Ο αντίκτυπος των τεχνολογικών προόδων στην υγειονομική περίθαλψη ήταν βαθύς, φέρνοντας επανάσταση στον τρόπο παροχής και εμπειρίας της υγειονομικής περίθαλψης.

Πώς η φυσική κατάσταση βελτιώνεται με την χρήση της τεχνολογίας;

Άσκηση: Η τεχνολογία της προπόνησης έχει ξεπεράσει τις παραδοσιακές προσεγγίσεις, παρέχοντας στα άτομα τα εργαλεία και τα κίνητρα που χρειάζονται για να οδηγήσουν ενεργό και πιο υγιεινό τρόπο ζωής.

Πώς η τεχνολογία συμβάλλει στην διαχείριση του διαβήτη;

Διαβήτης: Η ενσωμάτωση αυτών των τεχνολογικών εργαλείων σε ένα ολοκληρωμένο σχέδιο διαχείρισης του διαβήτη μπορεί να βελτιώσει την ακρίβεια, την ευκολία και τη συνολική ποιότητα ζωής για τα άτομα που ζουν με διαβήτη.

ΜΕΘ: Πώς η ιατρική τεχνολογία βοηθά τους ασθενείς εντατικής θεραπείας

ΜΕΘ: Η ενσωμάτωση της ιατρικής τεχνολογίας στην εντατική θεραπεία όχι μόνο βελτιώνει τα αποτελέσματα των ασθενών αλλά και εξορθολογίζει τις ροές εργασίας για τους επαγγελματίες υγείας.

Smartwatch εντοπίζει την κολπική μαρμαρυγή

Μια ερευνητική ομάδα ανέπτυξε ένα συνταγογραφούμενο ρολόι χειρός που παρακολουθεί συνεχώς τον καρδιακό ρυθμό του χρήστη και χρησιμοποιεί έναν μοναδικό αλγόριθμο για την ανίχνευση της κολπικής μαρμαρυγής. 

Εκτυπώσιμα εμφυτεύματα για ιστούς και οστά

Βιοϊατρική: Τα πολυμερή με βάση την ντοπαμίνη δεν είναι κατάλληλα μόνο για προσκόλληση ιστού: Μπορούν επίσης να χρησιμοποιηθούν για την ανάπτυξη λειτουργικών επιφανειών, αντιβακτηριακών υλικών και έξυπνων επικαλύψεων με ειδικές λειτουργίες.