Search Icon
ΑΝΑΖΗΤΗΣΗ
Τεχνολογία

Τεχνητή νοημοσύνη: Ο ρόλος της τεχνητής νοημοσύνης στην αναγνώριση του άσθματος σε παιδιατρικό περιβάλλον

Τεχνητή νοημοσύνη: Ο ρόλος της τεχνητής νοημοσύνης στην αναγνώριση του άσθματος σε παιδιατρικό περιβάλλον

Τεχνητή νοημοσύνη: Ένας αριθμός μοντέλων που βασίζονται στη μηχανική μάθηση, έχουν αναπτυχθεί για τον εντοπισμό του άσθματος μέσω της χρήσης αναδρομικών ηλεκτρονικών ιατρικών αρχείων (EMR) ασθενών.

Η συχνότητα εμφάνισης άσθματος στα παιδιά της Κίνας έχει αυξηθεί γρήγορα ως αποτέλεσμα της ανεπαρκούς διαχείρισης. Αυτό οφείλεται κυρίως στην αποτυχία πολλών παιδιάτρων πρωτοβάθμιας εκπαίδευσης να διακρίνουν το άσθμα από κοινές παθήσεις του αναπνευστικού, όπως η βρογχίτιδα και η πνευμονία. Τέτοιες λανθασμένες διαγνώσεις συχνά οδηγούν σε κατάχρηση αντιβιοτικών και συστηματικών γλυκοκορτικοειδών. Επιπλέον, εάν το άσθμα δεν διαγνωστεί έγκαιρα, η χρόνια φλεγμονή των αεραγωγών οδηγεί σε βλάβες που όχι μόνο εμποδίζουν τις αθλητικές ικανότητες των παιδιών, αλλά χρησιμεύουν ως η κύρια αιτία για χρόνιες παθήσεις των αεραγωγών ενηλίκων, όπως η χρόνια αποφρακτική πνευμονοπάθεια (ΧΑΠ).


Ένας αριθμός μοντέλων που βασίζονται στη μηχανική μάθηση, έχουν αναπτυχθεί για τον εντοπισμό του άσθματος μέσω της χρήσης αναδρομικών ηλεκτρονικών ιατρικών αρχείων (EMR) ασθενών. Αυτά τα μοντέλα αξιολογήθηκαν ανεξάρτητα χρησιμοποιώντας EMR τόσο από το Πνευμονολογικό Τμήμα όσο και από άλλα τμήματα του Νοσοκομείου Παίδων, της Ιατρικής Σχολής του Πανεπιστημίου Zhejiang, Κίνα.

Δύο ανεξάρτητα σετ δοκιμών εφαρμόστηκαν για την αξιολόγηση της απόδοσης. Το TestSet-1 αποτελούνταν από 325 θετικές περιπτώσεις άσθματος και 428 αρνητικές περιπτώσεις από το Πνευμονολογικό Τμήμα. Το TestSet-2 αποτελούνταν από 2.123 περιπτώσεις από μη πνευμονολογικά τμήματα και περιλάμβανε 337 θετικές και 1.786 αρνητικές περιπτώσεις. Πειραματικά αποτελέσματα έδειξαν ότι το μοντέλο CatBoost ξεπέρασε άλλα μοντέλα και στα δύο σετ δοκιμών με ακρίβεια 84,7% και περιοχή κάτω από την καμπύλη (AUC) 90,9% στο TestSet-1 και ακρίβεια 96,7% και AUC 98,1% στο TestSet-2.

Σε αυτή τη μελέτη, δύο σετ αναδρομικών EMR ασθενών ηλικίας κάτω των 14 ετών συλλέχθηκαν από το Νοσοκομείο Παίδων της Ιατρικής Σχολής του Πανεπιστημίου Zhejiang, Κίνα. Το DataSet-1 αποτελούνταν από 3.761 περιπτώσεις, με 1.624 θετικά κρούσματα άσθματος και 2.137 αρνητικά κρούσματα από το Πνευμονολογικό Τμήμα. Το DataSet-2 αποτελούταν από 2.123 περιπτώσεις με 337 θετικά και 1.786 αρνητικά από μη πνευμονολογικά τμήματα συμπεριλαμβανομένων του Καρδιαγγειακού Τμήματος, του Ενδοκρινολογικού Τμήματος, του Νεφρολογικού Τμήματος, του Νευρολογικού Τμήματος και του Αιματολογικού Τμήματος του νοσοκομείου. Όλα τα αρχεία εξετάστηκαν από τουλάχιστον δύο αναπνευστικούς εμπειρογνώμονες που έκαναν ανεξάρτητες διαγνώσεις άσθματος για κάθε αρχείο, με βάση τον οδηγό διάγνωσης και πρόληψης βρογχικού άσθματος για παιδιά (έκδοση 2016) . Αρχικά, δύο αναπνευστικοί εμπειρογνώμονες εξέδωσαν την ανεξάρτητη αξιολόγησή τους. Στη συνέχεια, ο χρυσός κανόνας για τη διαγνωστική απόφαση (δηλαδή, ετικέττα βασικής αλήθειας για εκπαίδευση μοντέλων) για κάθε εγγραφή έγινε με συνέπεια κρίσης. Όπου ήταν εμφανής μια ασυμφωνία μεταξύ των δύο ανεξάρτητων κρίσεων, διενεργήθηκαν πρόσθετες ανεξάρτητες αξιολογήσεις από άλλους δύο αναπνευστικούς εμπειρογνώμονες. Ο δεύτερος γύρος γνωματεύσεων επικρατούσε εάν γινόταν διαγνωστική συμφωνία. Σε περιπτώσεις που δεν επιτεύχθηκε συμφωνία με τη δεύτερη επανεξέταση, η διαδικασία επαναλαμβανόταν μέχρι να επιτευχθεί διαγνωστική συμφωνία.

Το μοντέλο τεχνητής νοημοσύνης (AI) θα μπορούσε να εντοπίσει γρήγορα και με ακρίβεια το άσθμα σε γενικούς ιατρικούς θαλάμους παιδιών και μπορεί να βοηθήσει τους βασικούς παιδιάτρους στη σωστή διάγνωση του άσθματος. Διαθέτει μεγάλη κλινική αξία και πρακτική σημασία για τη βελτίωση του ποσοστού ελέγχου του άσθματος στα παιδιά, τη βελτιστοποίηση των ιατρικών πόρων και τον περιορισμό της κατάχρησης αντιβιοτικών και συστηματικών γλυκοκορτικοειδών.

Διαβάστε όλες τις τελευταίες Ειδήσεις για την υγεία από την Ελλάδα και τον Κόσμο
Ακολουθήστε το healthweb.gr στο Google News και μάθετε πρώτοι όλες τις ειδήσεις
Ακολουθήστε το healthweb.gr στο κανάλι μας στο YouTube

Διαβάστε Eπίσης:

H τεχνητή νοημοσύνη θα βοηθήσει να δούμε τον καρκίνο με νέους και καλύτερους τρόπους;

Η τεχνητή νοημοσύνη αναβαθμίζει την καταπολέμηση των μολυσματικών ασθενειών

Το AI προβλέπει στάσεις σεξ που θα κάνουμε στο μέλλον

Διάγνωση καρκίνου του δέρματος: Διερεύνηση ενισχυτικής μάθησης για βελτιωμένη απόδοση της τεχνητής νοημοσύνης

svg%3E svg%3E
svg%3E
svg%3E
Περισσότερα

Νευροεπιστήμη και συναισθηματική ρύθμιση: Μηχανισμοί και κλινικές εφαρμογές

Νευροεπιστήμη και συναισθηματική ρύθμιση: H γνώση των νευροεπιστημονικών μηχανισμών της συναισθηματικής ρύθμισης έχει οδηγήσει στην ανάπτυξη καινοτόμων θεραπευτικών προσεγγίσεων.

Wearable συνδέει τη φλεγμονώδη νόσο του εντέρου με διαταραχή ύπνου

Wearable: Η μελέτη διαπίστωσε ότι σημαντικές αλλαγές στις μετρήσεις ύπνου - συγκεκριμένα, ο μειωμένος ύπνος REM και ο αυξημένος ελαφρύς ύπνος - εμφανίστηκαν μόνο όταν υπήρχε φλεγμονή στο σώμα.

Μια επαναστατική εξέταση αίματος μπορεί να ‘μετρά’ τον πόνο 

Εξέταση αίματος: Επιστήμονες έχουν ανακαλύψει ότι συγκεκριμένοι δείκτες, όπως οι φλεγμονώδεις κυτοκίνες, τα νευρογλοιακά στοιχεία και οι ορμόνες του στρες, ενδέχεται να σχετίζονται με την ένταση του πόνου.

Bloodstain analysis - Τέχνη και επιστήμη 

Ένα σημαντικό στοιχείο της τέχνης στην ανάλυση αίματος είναι η ικανότητα να διακρίνει κανείς διαφορετικά είδη αιμορραγίας, όπως τυχαία σταγόνες, διασκορπισμένες ή διασπαρμένες, και να συνθέσει ένα συνεκτικό σενάριο της εγκληματικής πράξης.

Ο πρώτος υπολογιστής που συνδυάζει ανθρώπινους νευρώνες με τσιπ σιλικόνης 

Μια από τις πιο σημαντικές εξελίξεις ήταν η δημιουργία των νευρομορφικών chip, που χρησιμοποιούν αναλογικά ή ψηφιακά κυκλώματα για να προσομοιώσουν τη συμπεριφορά των νευρώνων. Αυτά τα τσιπ μπορούν να μιμηθούν την πλαστικότητα του εγκεφάλου, δηλαδή την ικανότητα των νευρώνων να αλλάζουν τις συνδέσεις τους ανάλογα με τις εμπειρίες.

Close Icon